PhD Thesis Defence

Integrated Transceiver Circuits for Catheter-based Ultrasound Probes and Wearable Ultrasound Patches

Mingliang Tan

Promotors: Michiel Pertijs and Ronald Dekker

Thesis: link

Collegerama link (live stream of the defence): link

Abstract: This thesis describes the design, prototyping, and experimental evaluation of transceiver ASICs (application-specific integrated circuits) for catheter-based ultrasound probes and wearable ultrasound patches. Various circuit techniques are proposed to address requirements and implementation bottlenecks in these applications. Prototype chips are presented to demonstrate the effectiveness of these techniques. To reduce the loading effect of micro-coaxial cables in an ICE probe based on capacitive micro-machined ultrasound transducers (CMUTs), an ASIC prototype including element-level high-voltage pulses and low-noise trans-impedance amplifiers has been implemented. Besides reducing the loading effect from micro-coaxial cables, ASICs play an important role in achieving cable-count reduction, which is crucial for 3-D imaging catheters, such as forward-looking IVUS probes. Circuit techniques are proposed to implement a prototype ASIC which only requires 4 cables to interface with a 2D piezoelectric transducer array. Additionally, to address the challenges in interface electronics for wearable ultrasound patches, a prototype ASIC is presented that contains 64 reconfigurable transceiver channels that can interface with different transducer elements by employing channel-parallelizing techniques.

Additional information ...

Overview of PhD Thesis Defence