Smart Ultrasound

Contact: Michiel Pertijs

Research fields:

  • Compact and power-efficient ultrasound front-ends
  • Circuits for ultrasound signal processing and cable-count reduction
  • In-probe digitization
  • Integration of ultrasound transducer arrays on CMOS
  • Catheter- and endoscope-based ultrasound probes
  • Wearable ultrasound devices

Multimodal, multiresolution brain imaging

Developing a novel brain imaging paradigm combining functional ultrasound and EEG

Ultra-X-treme: Ultrafast Ultrasound Imaging for Extended Diagnosis and Treatment of Vascular Disease

The NWO Perspectief Programme Ultra-X-treme is a 4 Meuro programme in which 5 academic centers and 8 companies collaborate to develop patient-specific ultrasound-based techniques to diagnose and treat vascular disease

Imaging Needles

In this project, we will develop deep tissue needle-probes for multi-modal molecular imaging

Monitoring infant brain perfusion by trans-fontanel echography

In this project we will develop a device that uses 3D ultrasound to monitor brain perfusion in preterm infants.

Precision Ultrasonic Flow Meters using Matrix Transducers

In this project, we will develop a new class of clamp-on ultrasonic flow meters using matrix transducers

3D Intra-Cardiac Echography

In this project, novel transducers, integrated electronics and visualization methods will be developed that will enable real-time 3D ultrasound imaging at the tip of a catheter

Integrated Circuits for Intra-Vascular Ultrasound Imaging

In this project, we develop integrated circuits to enable the next generation of 3D intra-vascular ultrasound probes

Integrated Near Field sensOrs for high Resolution MicrowavE spectRoscopy

The goal of this project is the creation of a new class of sensors, enabling fast and accurate dielectric characterization of biological samples, with high-sensitivity and high-spatial resolution.

3D Plane-wave ultrasound matrix transducer for carotid artery diagnosis

In this project, we will develop a very powerful, three-dimensional (3D) ultrasound system for real-time imaging of the carotid arteries.


Ultrasound Integrated Patch for Medical Diagnostics

In this project, we will develop flexible, programmable transducer modules for ultrasound body patches

Miniature ultrasound probes for real-time 3D imaging and monitoring of cardiac interventions

This research project will enable the next generation of miniature ultrasound probes for real-time 3D transesophageal echocardiography, suitable for use in small children and newborns.

Perishables Monitoring through Smart Tracking of Lifetime and Quality by RFID

In this project, a wireless sensor platform has been developed to monitor the environmental conditions of perishable goods in the supply chain between producer and consumer.

Interfacing Resonant Sensors using Ringdown Measurement

The transient ring-down of resonant sensors is used to extract information about the sensor's resonance frequency and quality factor in a highly energy-efficient manner.

CMOS-Compatible Hot-Wire CO2 Sensors

In the project, we have developed CMOS-compatible CO2 sensors that detect the CO2-dependent heat loss of a suspended hot-wire transducer using dedicated precision readout electronics.

Capacitance-to-Digital Conversion

We have developed a wide variety of energy-efficient capacitance-to-digital converters for the readout of capacitive sensors